Differential regulation of synaptic inputs to dentate hilar border interneurons by metabotropic glutamate receptors.

نویسندگان

  • J Doherty
  • R Dingledine
چکیده

Regulation of synaptic transmission by metabotropic glutamate receptors (mGluRs) was examined at two excitatory inputs to interneurons with cell bodies at the granule cell-hilus border in hippocampal slices taken from neonatal rats. Subgroup-selective mGluR agonists altered the reliability, or probability of transmitter release, of evoked minimal excitatory synaptic inputs and decreased the amplitudes of excitatory postsynaptic currents (EPSCs) evoked with conventional stimulation. The group II-selective agonist, (2S,1R',2R',3R')-2-(2, 3-dicarboxylcyclopropyl) glycine (DCG-IV; 1 microM), reversibly depressed the reliability of EPSCs evoked by stimulation of the dentate granule cell layer. However, DCG-IV had no significant effect on EPSCs evoked by CA3 stimulation in the majority (82%) of hilar border interneurons. Both the group III-selective agonist, -(+)-2-amino-4-phosphonobutyric acid (-AP4; 3 microM), and the group I-selective agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG; 20 microM) reversibly depressed synaptic input to interneurons from both CA3 and the granule cell layer. We conclude that multiple pharmacologically distinct mGluRs presynaptically regulate synaptic transmission at two excitatory inputs to hilar border interneurons. Further, the degree of mGluR-meditated depression of excitatory drive is greater at synapses from dentate granule cells onto interneurons than at synapses from CA3 pyramidal cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced excitatory drive onto interneurons in the dentate gyrus after status epilepticus.

Impaired GABAergic inhibition may contribute to the development of hyperexcitability in epilepsy. We used the pilocarpine model of epilepsy to demonstrate that regulation of excitatory synaptic drive onto GABAergic interneurons is impaired during epileptogenesis. Synaptic input from granule cells (GCs), perforant path, and CA3 inputs onto hilar border interneurons of the dentate gyrus were exam...

متن کامل

Differential synaptic integration of interneurons in the outer and inner molecular layers of the developing dentate gyrus.

The dentate gyrus (DG) undergoes continued reorganization and lamination during early postnatal development. Interneurons with anatomically identified synaptic contacts migrate from the outer to the inner regions of the molecular layer (ML) of the DG. By using the 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP)-enhanced green fluorescent protein transgenic mouse, we were able to target and p...

متن کامل

Regulation of excitatory input to inhibitory interneurons of the dentate gyrus during hypoxia.

The role of metabotropic glutamate receptors (mGluRs) and adenosine receptors in hypoxia-induced suppression of excitatory synaptic input to interneurons residing at the granule cell-hilus border in the dentate gyrus was investigated with the use of whole cell electrophysiological recording techniques in thin (250 microns) slices of immature rat hippocampus. Minimal stimulation evoked glutamate...

متن کامل

Synaptic connectivity of distinct hilar interneuron subpopulations.

Dual intracellular recordings of hilar interneurons and CA3 pyramidal cells were performed in transverse slices of guinea pig hippocampus in the presence of the convulsant compound 4-aminopyridine (4-AP) and ionotropic glutamate receptor antagonists. Under these conditions, interneurons burst fire synchronously, producing synchronized inhibitory postsynaptic potentials (sIPSPs) in pyramidal cel...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 1998